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Abstract 

A modified approach via differential operator is given to derive a generalization of 
Stirling numbers of the first kind. This approach combines the two techniques 
given by Cakic [3] and Blasiak [2]. Some new combinatorial identities and many 
relations between different types of Stirling numbers are found. Furthermore, 
some interesting special cases of the generalized Stirling numbers of the first  
kind are deduced. Finally, a connection between generalized Stirling numbers of 
the first and second kind is obtained. 

1. Introduction 

Recently, a modified approach via differential operator to generalized 
Stirling numbers of the second kind seems more important and attracted 
the attention of several researchers, see [1-4] and [12]. Many 
generalizations, extensions, and applications of these numbers are given 
(see [5-8, 10, 11]). In this article, we give a modified approach via 
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differential operator to generalized Stirling numbers of the first kind, 
denoted by ( ).,;, srkns  This approach combines the two techniques 
given by Cakic [3] and Blasiak [2]. 

Throughout this article, we use the following conventions and 
notations: 

.for,1and0 0
00

kn
n

kk

n

kk
<== ∏∑

==

……  

The generalized falling and rising factorials of x associated with the 
sequence ( )110 ,,, −ααα=α n…  of order n, where 110 ,,, −ααα n…  are 
real numbers, are defined, respectively, by 
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Note that if ,1,,1,0, −=λ=α niii …  then 
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If ,1,,1,0, −==α niii …  the falling and rising factorials are defined, 
respectively, by 
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Gould [13] proved that 
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where ( )kns ,  and ( )kns ,1  are the usual Stirling numbers and singles 
Stirling numbers of the first kind, respectively, defined by 
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They satisfy, respectively, the recurrence relations 

( ) ( ) ( ),,1,,1 knnsknskns −−=+  (4) 

and  
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Equation (1) is equivalent to 
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where +a  and a are boson creation and annihilation operators,  
respectively. 

In Section 2, using the modified differential operator …nn sxr De  

,1122 sxrsxr DeDe  we define the generalized Stirling numbers of the first 

kind, denoted by ( ),,; srks  which are called ( )-, sr Stirling numbers. A 

recurrence relation and an explicit formula of these numbers are derived. 
In Section 3, some interesting special cases are discussed. Moreover, 
some new combinatorial identities are given. In Section 4, a connection 
between generalized Stirling numbers of the first and second kind is 
obtained. Finally, a computer program is written using Maple and 
executed for calculating the generalized Stirling numbers of the first kind 
and some special cases, see Appendix. 

We modify Gould’s results [13], see also [9] and [14], and find a 
generalization of the Stirling numbers of the first kind as follows: 
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2. The Generalized Stirling Numbers  
of the First Kind 

Let ( ),,,,: 21 nrrrr …=  be a sequence of real numbers and =:s  
( ),,,, 21 nsss …  be a sequence of nonnegative integers. 

Definition 1. Let ( ),,; srks  called ( )-, sr Stirling numbers of the 
first kind, be defined by 
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Equation (7) is equivalent to 
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Theorem 1. The numbers ( )srks ,;  satisfy the recurrence relation 
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with the notations ( )1211 ,,,,: ++ =⊕ nnn rrrrrr "  and =⊕ + :1nss  
( ).,,,, 121 +nn ssss "  

Proof. From (7), we have 
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thus, we obtain 
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Equating the coefficients of kD  on both sides yields (9).   

Theorem 2. The numbers ( )srks ,;  have the explicit formula 
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thus, by iteration, we get 
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comparing (7) and (12) yields (10).   

Operating with both sides of (7) on the exponential function ,lxe  we 
get 

( ) ( ) ( ) .,;
1

21 1211
k

sk

s
n

ss lsrksrrrlrll
n

n ∑
β

=
− =+++++ ""  

Therefore, since a nonzero polynomial can have only a finite set of zeros, 
we have 
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Remark 1. It is worth nothing that, Equation (13) gives a 
generalization of Comtet numbers [8] of the first kind ( )kns ,α  associated 

with the sequence ( ),,,, 110 −ααα=α n"  defined by 
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Setting 1=x  in (13), we have the identity 
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Next, we derive some interesting special cases. 

3. Special Cases 

Setting rri =  and nissi ,,1, "==  in (7), then we have the 

following definition: 

Definition 2. For any real number r and nonnegative integer s, let 
the numbers ( ),,;, srkns  called ( )-, sr Stirling numbers of the first kind, 

be defined by 

( ) ( ) ,,;, k
ns

sk

nrxnsrx DsrknseDe ∑
=

=  (16) 

where ( ) 1,;0,0 =srs  and ( ) .for0,;, nskssrkns >>=   

Corollary 1. The numbers ( )srkns ,;,  satisfy the recurrence relation 
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Proof. The proof follows directly from (9) by setting rri =  and 

.,,1, nissi "==    
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Corollary 2. The numbers ( )srkns ,;,  have the explicit formula 
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Proof. The proof follows by setting rri =  and nissi ,,1, "==  in 
(10).   

Setting rri =  and nissi ,,1, "==  in (13), we have 
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Moreover, we discuss the following two special cases: 

(i) Setting 1=r  in (16), then the numbers ( ),,1;, skns  are defined 
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Corollary 3. The numbers ( ),,1;, skns  satisfy the recurrence relation 
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Proof. The proof follows directly from (17) and (18), respectively, by 
setting .1=r    

Remark 2. In fact, Equations (18) and (22) show that 
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Setting 1=r  in (19), we have 
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Corollary 4. The numbers ( ) ( )knskns ,:1,1;, 1=  satisfy the 
recurrence relation (5) and have the new explicit formula 
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Proof. The proof follows by setting 1=s  in (21) and (22), 
respectively.   
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where the summation, on the right hand side, is extended over all 
( )-kn − combinations { }kniii −,,, 21 "  of the ( )1−n  positive integers 
{ }.1,,2,1 −n"  

(ii) Setting 1=s  in (16), then the numbers ( )1,;, rkns  are defined 
by 
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Corollary 5. The numbers ( )1,;, rkns  satisfy the recurrence relation 
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Proof. The proof follows directly by setting 1=s  in (17).   

Theorem 3. The numbers ( )1,;, rkns  have the exponential 

generating function 
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This shows that ( )srkns ,;,  can be represented in terms of ( )-1,r  

Stirling numbers.  
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This shows that ( )srkns ,;,  can be represented in terms of the singles 

Stirling numbers of the first kind. For example, if ,2,5 == rn  and 
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Similarly, ( )skns ,1;,  can be represented in terms of the singles Stirling 
numbers of the first kind. For example, if ,1,5 == rn  and ,2=s  then 
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4. Connection Between Generalized Stirling 
Numbers of the First and Second Kind 
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Successively, we obtain 
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From the RHS of (37), we get 
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Equating of coefficients of AADt  in (39) and (40), we obtain the 
interesting identity 

( ) ( ) ( ) ( ).,,;,, ,
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n

n

n

k
kii

n

ijkkkj
∑∏∑∑
β

=
ρ

==+++

β

=

=  (41) 

This identity gives a connection between generalized Stirling numbers of 
the first and second kind. 

Setting rri =  and ssi =  in (40), we get 

( ) ( ) ( ) ( ).,,;,,, ,
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For example, if ,1,2,2 === rsn  and ,2=A  we have 

( ) ( ) ( )( ) ( ) ( ).2,2,2;,22,2,2
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2
,,1,1

2

1

4

2
2121

21

kSksSkS
k

kkkki
ijkkj

∑∏∑∑
=

++
==+=

=  

(43) 

Using [12, Equation (10)] and Table 1, we get 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )2,22,21,22,21,21,243ofLHS 2,1,3,21,1,2,2 SSSSSS +=  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )1112,22,22,22,21,22,2 2,2,3,31,2,2,3 =++ SSSSSS   

( ) ( ) ( ) ( ) ( ) ( ) .14611311411 =+++  
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( ) ( ) ( ) ( ) ( ) ( ) ( )2,32,1;3,22,22,1;2,22,2,1;,243ofRHS
4

2
SsSskSks

k
+== ∑

=
 

( ) ( ) ( ) ( ) ( ) .147132112,42,1;4,2 =++=+ Ss  (Tables 1 and 3) 

This confirms (43). 
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Appendix 

Table 1. 51,1,1,5 ≤≤=== ksrn  

1 0 0 0 0 1 

1 1 0 0 0 2 

2 3 1 0 0 6 

6 11 6 1 0 24 

24 50 35 10 1 120 

Table 2. 51,1,2,5 ≤≤=== ksrn  

1 0 0 0 0 1 

2 1 0 0 0 3 

8 6 1 0 0 15 

48 44 12 1 0 105 

384 400 140 20 1 945 

Table 3. 102,2,1,5 ≤≤=== ksrn  

1 0 0 0 0 0 0 0 0 1 

1 2 1 0 0 0 0 0 0 4 

4 12 13 6 1 0 0 0 0 36 

36 132 193 144 58 12 1 0 0 576 

576 2400 4180 3980 2273 800 170 20 1 14400 

Table 4. 102,2,2,5 ≤≤=== ksrn  

1 0 0 0 0 0 0 0 0 1 

4 4 1 0 0 0 0 0 0 9 

64 96 52 12 1 0 0 0 0 225 

2304 4224 3088 1152 232 24 1 0 0 11025 

147456 307200 267520 127360 36368 6400 680 40 1 893025 
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