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Abstract

A modified approach via differential operator is given to derive a generalization of
Stirling numbers of the first kind. This approach combines the two techniques
given by Cakic [3] and Blasiak [2]. Some new combinatorial identities and many
relations between different types of Stirling numbers are found. Furthermore,
some interesting special cases of the generalized Stirling numbers of the first
kind are deduced. Finally, a connection between generalized Stirling numbers of

the first and second kind is obtained.
1. Introduction

Recently, a modified approach via differential operator to generalized
Stirling numbers of the second kind seems more important and attracted
the attention of several researchers, see [1-4] and [12]. Many
generalizations, extensions, and applications of these numbers are given
(see [5-8, 10, 11]). In this article, we give a modified approach via
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differential operator to generalized Stirling numbers of the first kind,
denoted by s(n, k; 7, 5). This approach combines the two techniques

given by Cakic [3] and Blasiak [2].

Throughout this article, we use the following conventions and
notations:

i...annd ﬁ...zl, for n < k.

F=Fy k=hg

The generalized falling and rising factorials of x associated with the
sequence o = (ag, dq, ..., &,_;) of order n, where ag, o, ..., &, are

real numbers, are defined, respectively, by

(x; @), : H(x a;), (x; @)y =1, and (x; o) H(x+ocl) x; o), =1.
Note that if o; =ik, i =0,1, ..., n —1, then

(x[n), : H(x —id), (x[A)y =1, and (x]A), : H(x +id), (x[A), = 1.

If a; =i,1=0,1,..., n—1, the falling and rising factorials are defined,

respectively, by

n-l n-1
@), = [ &=, =)o = 1, and (x),, = [ [+ ), (=) = 1.
=0 i=0

Gould [13] proved that

(e"D)" = ™ (-1)"*s(n, k)D"
k=0

n
= eanSl(n, kD", D = D, = d/dx, 1)
k=1

where s(n, k) and s;(n, k) are the usual Stirling numbers and singles

Stirling numbers of the first kind, respectively, defined by
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n
(x), = Zs(n, k)", s(n, 0) = 8,.0- and s(n, k) = 0, for k > n, (2)
k=0

and

n
(x), = Zsl(n, k)", s,(n, k) = 8p.0, and s(n, k) = 0, for k > n.  (3)
k=0

They satisfy, respectively, the recurrence relations
s(n+1, k) = s(n, k—1) - ns(n, k), (4)
and
si(n+1, k) = s1(n, k —1) + ns;(n, k). (5)
Equation (1) is equivalent to

n n
+

(e® a)' = e"a+2(— 1) *s(n, k)a* = e"a+281(n, k)a”, (6)

k=1 k=1

where a® and a are boson creation and annihilation operators,

respectively.

In Section 2, using the modified differential operator e”*D®r ..

e’QxDszerlxDsl, we define the generalized Stirling numbers of the first
kind, denoted by s(k; 7, s), which are called (7, 5)- Stirling numbers. A
recurrence relation and an explicit formula of these numbers are derived.
In Section 3, some interesting special cases are discussed. Moreover,
some new combinatorial identities are given. In Section 4, a connection
between generalized Stirling numbers of the first and second kind 1is
obtained. Finally, a computer program is written using Maple and
executed for calculating the generalized Stirling numbers of the first kind

and some special cases, see Appendix.

We modify Gould’s results [13], see also [9] and [14], and find a

generalization of the Stirling numbers of the first kind as follows:
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2. The Generalized Stirling Numbers
of the First Kind

Let 7 :=(n, ry, ..., 1,), be a sequence of real numbers and s :=
(s1, 89, ..., 8, ), be a sequence of nonnegative integers.

Definition 1. Let s(k; 7, 5), called (7, 5)- Stirling numbers of the
first kind, be defined by

S o) B
WX 1Sn X 1Sy 71X 1S1 _ (hzlrl)x .= \nk
et D | e2*D%2e "DV = e Es(k,r,s)D, 7
k=81

n

where s; <k <B,,s(k;7,5)=0 for k <s; or k> Zsj, s(0; 7,5) =1,

Jj=1
n
and B, = Zs -
i=1
Equation (7) is equivalent to

+

n
+
rp)a’ Bn
Tha mat s2 riat s1 (Z )

a ‘e gt =l Zs(k; r, E)ak, s1 <k <B,. (8
k=51

Sn

e a e

Theorem 1. The numbers s(k; 7, §) satisfy the recurrence relation

Spn+l n
— — S - Lo =
s(k; 7 @141, 5 ®5,41) = Z( nflj(ZrJ- yn17 s(k —i; T, 5), 9)
-0\ v/ =
with the notations T ® 1, = (r, g, =+, Iy, Tpyp) and s @ s, q =

(Sl’ 825 "5 Sps Sp+l )
Proof. From (7), we have

ernJrlxDanernxDsn e?‘szS2eT‘1xD81

(z;"l)x Bn
_ ern+1xDSn+l(e =1 Z S(m, F, §)Dm )’

m=8
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thus, we obtain

(S e
r; )xPn+l
e =1 Z s(k; r® 1,8 Dy )Dk
k=8]_
n+l
(X, r)x Bu 1
—e TS s(miF 5D+ g D"
m=8; j:1
(nil ) 8
r)x Bn Spal n . :
—e i Z s(m; 7, 8) (sn;lj(zrj fr o
m=s i=0 j=1

n+l

(Y rp)xBnt1 span

n
.= (S i
=e =1 E E s(k-1; 7, s)( ";lj( .Elrj )n+1 ipk.
]:

k=31 =0

Equating the coefficients of D" on both sides yields (9).

Theorem 2. The numbers s(k; 7, 5) have the explicit formula

n-1

s 7. 5)= Y H(slg 1j (jzl;rj )i,

anlzﬁn *k, ilZO =1

n
where c,, =

ij, with iy = 0.
Jj=0
Proof. Since
(eVQXDSQ )(erlxDsl ) _ e(r1+r2 )x(D + 7‘11)82 D%
S9 . .
_ e(rl +19 )X Z (si )(’"1 )zl psits2—i ’
#=0

then

13X 1S3 X NSy nx nsy
(e"3* D) (2" D% ) (¥ D)

47

(10)
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52 . .
_ (erngS3 )e(rl +19 )x Z (sl? )(’”1 )ll pSits2—i

4=0

82 . .
olr+ratm)x Z(Si?)(rl YLD + (1 + 1y )I ] DL 5270
=0

S S
(r1+r2+r3 )x Z Z ( 2]( 3)(’1 )11 (’”1 Ty )12 DS1+52+53— - 12
i1=01i9=0
thus, by iteration, we get
ernxDsn . er2xDs2er1xDsl

n n n-1

l DI IEDINT
l'+1j(zrj )i Di=! =1 J' a1

n n—
Setting Zsj - Zij =B, —o0,_1 = k, we obtain
j=1 =1

ernxDsn erszszerlxDsl

(3 ) Ba 1
ATy H( lﬂj@ YD, (12)
k=51 6,,_1=B,—k, ;20 [=1 J=1
comparing (7) and (12) yields (10). O
Operating with both sides of (7) on the exponential function ek , we
get
Bn
Prl+n)2 - (l+n+rg+-try, )" = Z s(k; 7, 5)1".
k=S]_

Therefore, since a nonzero polynomial can have only a finite set of zeros,
we have

n j-1 Bn

H(x + Zri Vi = Z s(k; 7, 5)x", where ry = 0. (13)

j:1 1=0 k=81



GENERALIZED STIRLING NUMBERS OF THE FIRST ... 49

Remark 1. It is worth nothing that, Equation (13) gives a

generalization of Comtet numbers [8] of the first kind sg(n, k) associated

with the sequence o = (agq, o, -+, &,_1 ), defined by
n Jj-1
t; @), = Zsa(n, k)t"®, where oj_g = Z— r,j=1-,n (14)
k=0 =0

Setting x = 1 in (13), we have the identity

Bn n Jj-1
D sl 7, 5) = [Ta+ D). (15)
k=3, j=1 i=0
Next, we derive some interesting special cases.
3. Special Cases
Setting r, =r and s; =s,i=1,---,n in (7), then we have the
following definition:

Definition 2. For any real number r and nonnegative integer s, let

the numbers s(n, k; r, s), called (r, s)- Stirling numbers of the first kind,
be defined by
ns
(e™*D*) = eans(n, k; r, s)DF, (16)
k=s
where s(0, 0; r, s) =1 and s(n, k; r, s) = 0 for s > k > ns.

Corollary 1. The numbers s(n, k; r, s) satisfy the recurrence relation

S

s(n+1, k1, 8) = Z(f)(nr)s_is(n, k—1i;r,s). 17

1=0
Proof. The proof follows directly from (9) by setting r, =r and

s =81=1 -, n. O
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Corollary 2. The numbers s(n, k; r, s) have the explicit formula

n-1 .
s(n, k; r, s) = pns=k Z H(f,jjlj, ig = 0. (18)
j

Op_1=ns—k,i;20 j=1
Proof. The proof follows by setting , =r and s; =s,i=1, -, n in
(10). O
Setting r;, =r and s; =s,i =1, -+, n in (13), we have

ns

n-1
H(x +ir)’ = ((x[r), )’ = Zs(n, E; r, ). (19)
1=0

k=s
Moreover, we discuss the following two special cases:

(i) Setting r =1 in (16), then the numbers s(n, k; 1, s), are defined
by

ns
(e*D?) = eans(n, k; 1, s)x*D*, (20)
k=s

where s(n, k; 1, s) = 0 for s > £ > ns and s(0, 0; 1, s) = 1.
Corollary 3. The numbers s(n, k; 1, s), satisfy the recurrence relation

S

sn+1, k1, 8) = Z(f)nsfis(n, k-1;1,5), (21)

i=0
and have the explicit formula

n—

s(n, k; 1, s) = Z ( l(f_]jij ), where iy = 0. (22)
1

. - J
Gp_1=ns—k,i;20 j=

Proof. The proof follows directly from (17) and (18), respectively, by
setting r = 1. O

Remark 2. In fact, Equations (18) and (22) show that

s(n, k; r, 8) = rns_ks(n, k; 1, s). (23)
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Setting r =1 in (19), we have

ns

n-1
(]G +0F = (), = D s, ks 1, s)*. 24)
i=0

k=Sl
Corollary 4. The numbers s(n, k; 1, 1) := s;(n, k) satisfy the
recurrence relation (5) and have the new explicit formula

n-1
s1(n, k) = > I (25)
Op-1=n-k,i;j€{0,1} j=1

Proof. The proof follows by setting s=1 in (21) and (22),
respectively. O

Thus, from (25) and [7, Theorem 8.1, p. 280], we have the identity

-1
i_[j‘f = D iy i (26)

Op_1=n-k,i;€{0,1} j=1

where the summation, on the right hand side, is extended over all
(n — k)- combinations {i;, iy, -, i,_p} of the (n—1) positive integers

{1, 2,--,n —1}.
(i) Setting s =1 in (16), then the numbers s(n, k; r, 1) are defined
by

n
(e™*D)" = emes(n, k; r, 1)DF, 27
k=1

where s(n, 0; r,1) = 8,, ¢, s(n, k; r,1) = 0 for & > n.
Corollary 5. The numbers s(n, k; r, 1) satisfy the recurrence relation
s(n+1,k;r,1)=s(n, k—1;r,1)+nrsn, k; r, 1). (28)
Proof. The proof follows directly by setting s =1 in (17). O

Theorem 3. The numbers s(n, k;r,1) have the exponential

generating function
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[>e}

. _ . " 1 k
fults 7) = ;es(n’ s 7 1) = o (g )

Proof. The proof is left.
Setting s = 1 in (19), we have

n

n-1
H(x +ir) = (x|r),, = Zs(n, E; r, Dxk.
1=0

k=1
Thus, if putting x = 1 in (30), we have

n

n-1
Zs(n, k;r,1) = H(l +1ir),
1=0

k=1

hence putting r = 1, yields the well known identity

n n n-1
Zs(n, k;1,1) = Zsl(n, k) = H(l +1)=nl
k=1 k=1 1=0

(29)

(30)

(31)

(32)

From (19) and (30), then using Cauchy rule of multiplication of series, we

get

S
is(n, k; r, s)xk = [Zs(n, k;r, 1)xk] = li[ i s(n, k;; r, l)xki

k=s k=1 i=1 k;=1

ns S
= Z I I s(n, k;; r, 1)xk,
k=s Ri+ko+--+ks=k,k;21 i=1

hence

S
s(n, k; r, s) = Z Hs(n, ki;r, 1).
ki+ko+ - +ks=k, k;21 i=1

(33)

For example, if n =5,r =2, and s =2, then for £ =2, we have

s(5, 2; 2, 2) = 147456, Table 4, and z Hils(S, ki; 2,1) =

Ry +ky =2, k;>1

s(5,1; 2, 1)s(5, 1; 2, 1) = (384)% = 147456. (Table 2)
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This shows that s(n, k; r, s) can be represented in terms of (r, 1)-
Stirling numbers.

Since s(n, k;j; r, 1) = r"ﬁkisl(n, k;), hence (33) gives

S
s(n, k; r, s) = Hrn_kisl(n’ i)
ky+kg+---+ks=k, ki1 i=1
S
ns—k Z sl(n, ki)- (34)
ki +ko+-+kg=k, k21 i=1

=r

This shows that s(n, k; r, s) can be represented in terms of the singles
Stirling numbers of the first kind. For example, if n =5, r =2, and

s = 3, then for &k = 12, we get s(5, 12; 2, 3) = 26000, Table 5, and

3
915-12 H31(5, k) = 23(6s,(5, 3)s,(5, 4)s; (5, 5)

k1+k2+k3=12, kiZ]. =1
+381(5, 2)81(5, 5)81(5, 5) + 81(5, 4)81(5, 4)81(5, 4))
- 23(6(350) + 3(50) + (10)*) = 8(3250) = 26000. (Table 1)

Using (3) and Cauchy rule of multiplication of series, we get
ns S

((%),) = (Zn:ﬁ(n, k; )xki) = Z Z Hsl(n, k; )c®,
k=1

k=s ki +ko+---+kg=Fk, k;21 i=1

hence, by virtue of (24), we obtain

s(n, k; 1, s) = Z s1(n, k;). (35)
ky+kg+-+kg=k, k; 21 i=

—

Similarly, s(n, k; 1, s) can be represented in terms of the singles Stirling

numbers of the first kind. For example, if n =5, r =1, and s = 2, then
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2

for k& = 2, we have s(5, 2; 1, 2) = 576, Table 3, and Z Hi:l

kl +k2 =2,kl‘ >1
s(5, k;) = s(5, 1)s(5, 1) = (24)® = 576. (Table 1)

From (22) and (35), we have the interesting identity

n-1 . s
> qI(0- X [lams. @

op=ns—k,i;20 j=1 ki +kg+-+ks=k, ki 21 i=1

4. Connection Between Generalized Stirling
Numbers of the First and Second Kind

Setting e* = ¢, we have D = t% _ (D,, then substituting in (7), it

becomes
Z'.l T bn k
(" (tD,)°n )--- (¢2(tD, )’2 ) (¢ (tD, )™ ) = t<i=1" Z s(n, k; r, s)(tD,)".
k=81

(37)
The LHS of (37), for n =1, gives

81 k k
(D) = Y Sy, k) (D)

=3 Sen, k(D)
-

For n = 2,

(" (¢Dy )2 ) (¢ (¢D ) )

S9 S1
=17 ) S(sg, By ¥'2(D,)"2 Y S(s1, V(D)
ko =0 k=0

S2. 81

= D" S(sg, ka)S(sy, by W22 (Dy )22 (D, )1
o =0k =0
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Successively, we obtain

(t"n(tD, )’n ...t"2(¢tD, )°2¢" (tD; )™ )

Sy, S9 S1 n
_ Z Z Z HS(Sb k; )tr”+k"(Dt )kn ..-t'2+k2(Dt )k2tr1+k1(Dt )k1

Fp=0 kg=0k =0 i=1

NS Z]‘[swl, kWP (D, Y 1P (D, )2 P (D,
Fp=0 kg=0k=0 i=

where p = (p1, pg, ", pp) =T +k, le., p; =1+ Kk, i =12

From [12, Equation (5)], see also [2], we have

Ry+-+ky,
(D) tP2(Dy )21 (D) =1 Y S5 (0D, (38)
=Ty
where d,, =n +1r9 + - +1;,. Thus
t’™(¢D, )°n .. .12 (¢tD, )2 ¢ (¢tD, )™
sog 81 Rkitkot++k, n rlk1+k2+"‘+kn
DIE535 30 Y | EERAT N
0 g0k =0 (=R I=Fy

n
Bn ky+kg+-+ky Zrl n

> D = TSGRS00 D,
=1

j=0k1+k2+~--+kn=j [=k1

hence

t™m(¢Dy )°n .. "2 (tD, )2t (tD, )

= ¢i=0 > HS(sl,k)S (¢’ Df. (39)

(=0 j=Cl ki +ko+-+k,=] 1=1
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From the RHS of (37), we get

S Ba S B k
$1=0 Z(n, k;7,5)(tD; )" = ¢1=0 Zs(n, k; T, E)ZS(k, 0e' D}
k=81 k=81 (=0
S 17 Bu. B
=¢=0 s(n, k; 7, 5)S(k, 0)t' D/ . (40)
=0 k=(

Equating of coefficients of t!D' in (39) and (40), we obtain the

interesting identity

Bn Bn

s(n, k; 7, 5)S(k, 0). (41)

. [ J ECRASNH0

Jj=l Ry +ko+--+ky=j i=1 k=(

This identity gives a connection between generalized Stirling numbers of
the first and second kind.

Setting r; = r and s; = s in (40), we get
ns ns

Z Z ﬁS(si,ki)Sﬁ,;(n, f)zZs(n, ki1, 8)S(k, £).  (42)

Tl ky +hy 4ty =j i=1 =t
For example, if n=2,s=2,r =1, and ¢ =2, we have
4 2 4
Z Z HS(Z, RS (Ll 1t hy ) (kg by ) (25 2) = Zs(z k; 2, 2)S(k, 2).
=2k Y hy=j i=1 k=2
(43)
Using [12, Equation (10)] and Table 1, we get

LHS of (43) = S(2, 1)S(2, 1)S(2,2),1,1)(2, 2) + S(2, 1)S(2, 2)S(2,3),(1,2)(2, 2)
+5(2, 2)S(2, 1)S(3, 2), (2,1)(2 2) + S(2, 2)S(2, 2)S(3,3),(2,2)(2 2) = 11) (1)

+1(1)(4)+ 1(1) (3) + 1(1) (6) = 14.
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4

RHSof (43) = > s(2, k; 1, 2)S(k, 2) = s(2, 2 1, 2)S(2, 2) + s(2, 3; 1, 2)S(3, 2)

k=2

+s(2, 4; 1, 2)S(4, 2) = 1(1) + 2(3) + 1(7) = 14. (Tables 1 and 3)

This confirms (43).

(1]

(2]

(3]

(4]

(5]

(6]

(7

(8]

(9]

(10]

(11]

(12]

[13]

(14]
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Appendix

Tablel.n=5r=1,s=1,1<k <5

1 0 0 010 1
1 1 0 0|0 2
2 3 1 0|0 6
6 |11 | 6 1 |0 24

24 | 50 | 35| 10 | 1 | 120

Table2. n=5,r=2,s=1,1<k <5

1 0 0 010 1
2 1 0 010 3
8 6 1 0|0 15
48 44 12 1|0 105
384 | 400 | 140 | 20 | 1 | 945

Table3. n=5,r=1,s=2,2<k <10

1 0 0 0 0 0 0 0 0 1
1 2 1 0 0 0 0 0 0 4
4 12 13 6 1 0 0 0 0 36
36 132 193 144 58 12 1 0 0 576
576 | 2400 | 4180 | 3980 | 2273 | 800 | 170 | 20 | 1| 14400
Tabled. n =5,r=2,s=2,2< k<10
1 0 0 0 0 0 0 0 0 1
4 4 1 0 0 0 0 0 0 9
64 96 52 12 1 0 0 0 0 225
2304 4224 3088 1152 232 24 1 0 0 11025
147456 307200 267520 | 127360 | 36368 | 6400 | 680 40 1 | 893025
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